OLS Regression Results
==============================================================================
Dep. Variable: quality R-squared: 0.380
Model: OLS Adj. R-squared: 0.376
Method: Least Squares F-statistic: 85.42
Date: Tue, 16 Jul 2019 Prob (F-statistic): 1.91e-150
Time: 12:53:01 Log-Likelihood: -1477.9
No. Observations: 1543 AIC: 2980.
Df Residuals: 1531 BIC: 3044.
Df Model: 11
Covariance Type: nonrobust
========================================================================================
coef std err t P>|t| [0.025 0.975]
----------------------------------------------------------------------------------------
const 16.8216 22.349 0.753 0.452 -27.016 60.659
fixed_acidity 0.0162 0.027 0.595 0.552 -0.037 0.069
volatile_acidity -1.0631 0.125 -8.486 0.000 -1.309 -0.817
citric_acid -0.2830 0.150 -1.888 0.059 -0.577 0.011
residual_sugar 0.0061 0.020 0.300 0.765 -0.034 0.046
chlorides -1.7823 0.450 -3.959 0.000 -2.665 -0.899
free_sulfur_dioxide 0.0037 0.002 1.614 0.107 -0.001 0.008
total_sulfur_dioxide -0.0032 0.001 -4.110 0.000 -0.005 -0.002
density -12.5037 22.818 -0.548 0.584 -57.262 32.255
ph -0.5555 0.201 -2.770 0.006 -0.949 -0.162
sulphates 1.1789 0.128 9.202 0.000 0.928 1.430
alcohol 0.2955 0.028 10.618 0.000 0.241 0.350
==============================================================================
Omnibus: 22.132 Durbin-Watson: 1.740
Prob(Omnibus): 0.000 Jarque-Bera (JB): 33.368
Skew: -0.131 Prob(JB): 5.68e-08
Kurtosis: 3.671 Cond. No. 1.16e+05
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
[2] The condition number is large, 1.16e+05. This might indicate that there are
strong multicollinearity or other numerical problems.